Tetrahedron Letters Vo1.30, No.2, pp 207-210, 1989 0040-4039/89 \$3.00 + .oo Printed in Great Britain Pergamon Press plc

N-METHYL-2-DIMETHYLAMINOACETOHYDROXAMIC ACID AS A NEW REAGENT FOR THE SELECTIVE CLEAVAGE OF ACTIVE ESTERS UNDER NEUTRAL CONDITIONS

Mitsunori Ono* and lsamu ltoh Ashigara Research Laboratories, Fuji Photo Film Co., Ltd. Minami-Ashigara, Kanagawa 250 01, Japan

Summary: A new reagent, N-methyl-2-dimethylaminoacetohydroxamic acid 3 was developed for the selective cleavage of active *esters* **under neutral conditions. The kinetic** studies and the applications of <u>3</u> are describe

It is known' that anionic nucleophiles such as thiolate, hydroxamate, and oximate anions show remarkably high reactivities toward p-NPA in cationic micellar systems. On the *other* **hand, Bender et al.2 and Kunitake et al. 3 have suggested that the introduction of a second functionality into hydroxamic acid makes a catalytic activity toward p-NPA increase in nonmicellar systems. However, little is known about the applications of these observations into the selective deprotection of active esters without affecting other alkali sensitive groups in** organic synthesis. Continuing with our efforts in this area,⁴ we wish to report that the title **compound 3 serves as one of versatile bifunctional catalyst' - for the selective cleavage of active esters under neutral conditions.**

N-Methyl-2-dimethylaminoacetohydroxamic acid 3 (m.p. 94-97 °C; pKa₁= 7.3, pKa₂= 10.9),⁶ **which exhibits strong amphiphilic property, is conveniently obtainable from N, N-dimethylglycine hydrochloride 1 in high yield according to the route illustrated in Scheme 1.**

In the first place we examined the selective cleavage of ester 4 (m.p. 84-85 "C). The results are presented in Table 1. Treatment of 4 with the equivalent amount of 2 in THF/aqueous phosphate buffer (pH= 7.6) or MeOH at 30 "C gave 5 (m-p. 180 "Cl in a regioselective manner (run 1 and 2). It is to be noted that the reaction proceeds even in the solvent systems nonbuffered, affording 6 quantitatively within 1 h (run 5). When 3 was allowed to react with a twofold excess of 4 in THF/buffer, the appearance of 6, followed by HPLC, obeyed strictly the pseudo-first order kinetics for at least 72% of the cleavage with K $_{total}$ = 1.18 x 10⁻³ sec⁻¹

Scheme 2

Table 1. Comparison of the effects of 3 and other additives on the release of 6 from ester 4 at 30 °C.

Run	Additive (mol. eq.)	Solvent		$K_{a,obs}$, M^{-1} sec ⁻¹ K_{total} , sec ^{-1a} Products/ ⁸ b	
\mathbf{L}	$\frac{3}{2}$ (1.0) ^c	THF/buffer ^C	1.23×10^{-1}	2.48×10^{-3}	6(95)
$\overline{2}$	$3(1.0)^{\circ}$	(1 : 1) MeOH	1.52×10^{-1}	3.05 \times 10 ⁻³	6(98)
$\mathbf{3}$	3(0.75)	THF/buffer	1.22×10^{-1}	1.85 \times 10 ⁻³	6(98)
$\overline{4}$	$\frac{3}{2}$ (0.5) ^d	(1 : 1) THF/buffer	1.18×10^{-1}	1.19 \times 10 ⁻³	6(91)
$5 -$	3(1.0)	(1 : 1) THF/H ₀ (1 : I)	1.25 $\times 10^{-1}$	2.52×10^{-3}	6(95)
6	3(0.3)	THF/buffer (1 : 1)	1.20×10^{-1}	7.29 $\times 10^{-4}$	6 (72), $\frac{4}{5}$ (19)
7 ⁷	none	THF/buffer (1 : 1)		1.44×10^{-5}	6(3), 4(93)
8	MeCON (Me) OH (1.0)	THF/buffer	1.73×10^{-2}	3.45 \times 10 ⁻⁴	6(60), 4(36)
9	imidazole ⁸	THF/buffer	5.30 \times 10 ⁻³	1.06×10^{-4}	6(22), 4(64)
10	(1.0) 9 $C_4H_9NH_2$ (1.0)	benzene			6(41), 4(36)

a. K_{a, obs} was determined by the following equations: K_{a, obs} = $(K_{total} - K_{\text{spont}})/(3)_{\circ}$; log(P_∞ -
P_t)= $-K_{total} \times t/2.303 + \log P_{\infty}$, where P_∞ is the amount of <u>6</u> at the infinite reaction time and P_t is the amount of time t.

b. Yields estimated by HPLC analysis after 1 h.

c. 50 v/v⁸ THF-0.1M phosphate buffer (pH= 7.6), (3) = (4) = 2.0 x 10⁻²M d. (3) = 1.0 x 10⁻²M. (4) = 2.0 x 10⁻²M

(run 4). Under the same conditions in the absence of 3, the initial rate for the hydrolysis was 1.44 x 10^{-5} sec⁻¹, and the prolonged treatment led to a loss of the regioselectivity of the cleavage (run 7). That is, the selective hydrolysis of 4 was catalyzed 80-fold by 3 under these turnover conditions. Usefulness of 3 was also demonstrated in the comparison of the apparent rate constants $(K_{a.obs}$ and K_{total} with other additives reported (run 8, 9, and 10). The absence of a large kinetic solvent isotope effect using buffered THF/D₂O (pD= 7.6) supports the nucleophilic mechanism⁷ and may suggest that there is no accumulation of the acetyl intermediate 5 because of faster deacylation³ $(K_{H_2O}/K_{D_2O^{\pm}} 1.2 \pm 0.05)$ in the conditions.

Entry	Substrate	$3(mol. eq.)$ Solvents		Temp/°C	Time/h	Product (Yield/%) ^a
$\mathbf 1$ КC	QAc $R = AC$	2.5	CH ₃ OH	45	3	82 $R = H$; m.p. 215-217 °C
$\overline{\mathbf{c}}$	OAc $R = AC$ ÓR	$1\,.0$	THF/buffer ^b 45 (1 : 1)		4	$R = H$; 84 m.p. 66 °C
$\overline{\mathbf{3}}$	ОR $R = AC$ OAc	1.0	CH_3OH	50	1.5	$R = H;$ 80 oil
RO 4	\cos_2 Et C ₁ ه≫د $R = AC$	$\boldsymbol{0}$. $\boldsymbol{5}$	THF/buffer R.T. (2 : 1)		\mathbf{I}	$R = H;$ 95 m.p. 235-237 °C
5	QR CO_2Ph MHCOCF ₃	0.5	THF/buffer (1 : 1)	R.T.	$\mathbf 1$	$R = H$; 92 m.p. 175-177 °C
	$R = AC$					
6	C1 CH ₃ H_2C \overline{OAC} $\overline{R} = \overline{AC}$ ΟR	1.0	\mbox{THF}/\mbox{buffer} (3 : 1)	45	2	$R = H;$ 82 m.p. 82-83 °C
7	$R = Ac$ MCOCH ₃	1.0	EtOH	45	ı	$R = H$; 80 $m.p. 158-160 °C$
8 H_3CO	$H \sim N$ -OR OCH ₃ R=Ac	1.5	THF/CH .OH/ buffer (5 : 1 : 5)	50	\overline{a}	$R = H$; 79 m.p. 108-110 °C
$\boldsymbol{9}$	OR O OE t H_3C $R = AC$	0.5	EtOH	R.T.	2 ¹	$R = H$; 91 0i1
$1\,0$	$\bigotimes_{\substack{N \to N \\ N \to N}} s_{\substack{N \to N \\ N}}$	$\int_{0}^{0} 1.0$	THF/DMF/ buffer (3 : 1 : 1)	40	3	SH $Ph-N$ 86 [°] Ń m.p. 154-157 °C

Table 2. Results of the selective cleavage of several esters by 3

a) Yields of purified products; b) O.lM aqueous phosphate buffer (pH= 7.6)

The successful deprotection reactions listed in Table 2 indicate a reasonable applicability for alkali labile and/or oxygen sensitive compounds. Thus, protected phenols (entries l-41, naphthol (entry 5). hydroquinones (entries 6 and 7), oxime (entry 8), and enol (entry 9) were smoothly deprotected by treatment of 2 (0.5-2.5 equiv.) to regenerate the corresponding hydroxyl function without affecting other functional groups.

A typical procedure is as follows: To a solution of ester 7 (m.p. 130 °C; 310 mg, 1 mmol) **in THF (10 cm3) was added a solution of 3 (66 mg, 0.5 mmol) in aqueous phosphate buffer (5 cm3; pH= 7.6). The reaction mixture was stirred at room temperature for 1 h, poured into** water (50 cm³) and brine (50 cm³) and then dried over Na_2SO_4 . The solvent was removed **under reduced pressure to give crystals of ethyl 3-chloro-7-hydroxy-4-coumarincarboxylate (m.p. 235-237 OC; 253 mg).**

The authors wish to thank Miss Haruko Shimizu for carrying out the kinetic determination. References and Notes

- **1) J. H. Fendler and E. J. Fendler, "Catalysis in Micellar and Macromolecular Systems," Academic Press Inc., New York (1975).**
- **2) R. Hershfield and M. L. Bender, J. Am. Chem. Sot.,** 94, **1376 (1972).**
- 3) T. Kunitake and S. Horie, Bull. Chem. Soc. Japan, 48, 1304 (1975).
- **4) M. Ono and I. Itoh, Chem. Lett., 1988, 585.**
- **5) C. G. Swain and J. F. Brown, J. Am. Chem. Sot., fi. 2534 and 2538 (1952); V. Franzen,** Angew. Chem., 72, 139 (1960); T. Kunitake and Y. Okahata, Macromolecules, 9, 15 (1976).
- **6) The pKa values were determined by the potentiometric titration in 20 v/v% water in EtOH.**
- 7) W. B. Gruhn and M. L. Bender, J. Am. Chem. Soc., 91, 5883 (1969).
- **8) M. L. Bender and B. W. Turnquest, J. Am. Chem. Sot., 79, 1652 (1957); T. C. Bruce and J. M. Sturtevant, J. Am. Chem. Sot., fl, 2860 (1959); C. G. Overberger and C. M. Shen, J. Am. Chem. Sot., 93, 6992 (1971); T. Kunitake and Y. Okahata, Chem. Lett., 1974, 1057.**
- **9) K. H. Bell, Tetrahedron Lett., 27, 2263 (1986). (Received in Japan 12 November 1988)**